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Abstract:

A new explicit trigonometrically-fitted modified Runge-Kutta method (TFMRK) is
developed for the numerical integration of first-order initial value problems (IVPs)
with oscillatory solutions. The newly developed method was made according to the
method of Runge-Kutta Dormand and to the third algebraic order. Linear stability of
the new method were examined. Numerical results are reported to show the robust-
ness and competence of the new method compared with other existing Runge-Kutta
(RK) methods.
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Introduction

Consider the numerical solution of the IVPs for the first order Ordinary Differential
Equations (ODEs) in the form:

y':f(x,)’): J’(xo):% (1)
whose solutions show a periodically behavior. these problems exist in several fields
of applied sciences, for instance, orbital mechanics, astrophysics, molecular dynam-
ics, electronics and mechanics, etc. In general, most problems with oscillatory or
periodically behavior are second order or higher order. Thus, it is necessary to reduce
the higher order problems to first-order problems in order to solve the ODEs (1).
Researchers have developed integrates with frequency-dependent coefficients using
some techniques including exponential\trigonometrically-fitting (see [11, 15, 16]).
Moreover, the early construction of these techniques is introduced by (see [14] and
[12]). Meanwhile, Anastassi, and Simos [1] constructed two trigonometrically-fitted
methods based on a classical fifth algebraic order England's Runge-Kutta method for
the integration of the radial Schraodinger equation which have energy with lower
powers in the local truncation error. Subsequently, Bettis [3] developed a three-stage
method and a four stage method, which solve the equation y' = iwy without trunca-
tion error. Furthermore, Berghe et al [2] constructed exponentially fitted RK methods
with s stages. A few years later, Fawzi et al. in their papers , in their papers [9] and
[10] developed trigonometrically-fitted modified RK method from the fourth order
to determine the approximate solution of the first-order IVPs with oscillatory solution
respectively.
Meanwhile , Demba et al. in [6] and [5], developed a four-stage fourth order and
four- stage fifth-order explicit trigonometrically-fitted Nystrom RKN method re-
spectively for the numerical solution of second-order initial value problems with os-
cillatory solutions based on Simos RKN method. Then, Fang et al.[8] and Chen et
al.[4] derived two fourth order and three practical exponentially-fitted TDRK meth-
ods respectively. Zhang et al.[17] proposed a new fifth order trigonometrically-
TDRK method for the numerical solution of the radial Schrodinger equation and
oscillatory problems.
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The remaining part of this paper is designed as follows: section 1 deals with the deri-
vation of the proposed method. The stability property of the new method is analysed
in section 2. In section 3, we present the numerical results and the last section deals
with the conclusion.

Derivation of the new methods
In this part, Three-stage third order modified Runge-Kutta (RK) method using Simos
technique will be derived.
Consider the three-stage explicit modified RK method given by:

3
Y = Va0 ) bif (o + R YD) (2)

i=1

3
Vi=gon+h ) ayf(xa+ah) (3
=1
For g,=1,1=1,2,3. The coefﬁcientsf of the method can be expressed by the Butcher
table
01
C2 [ 92 A21
€3 193] d31 0Gzp
by b, bs

In this study, the three-stage third order RK method will be considered as given in
[4]. The coefficients of the method are given in Table 1 below:

Table 1. Butcher Table for third stage third order RK method

0] 1
11

2
212
3

1 2 1

6 3 6

Applying an explicit modified RK method (2) and (3) to y' = —iwy, we have:

3
Yass =Y+ h ) Bi(=iwX)  (4)

i=1

Yi=gm+h ) a;Y; (5
j=1

where

Y1 = 01 (6)

Y, = goyn —hway 1y (7

, Ys = gsyn —hwaz Y1 —hwaz, ¥, (8)

Now, let y,, = e™*n, computing the value of y,, and substituting to the equations
(4)-(8) and by using eV = cos(v) + i sin(v) and comparing the real and imaginary
parts, we get the following system of equations:
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v

3 2

cos(v) = 1 — v? z b; Z a;;(Y;e™W¥n) 9)
—
3

=1
sin(v) = vz b, g; (10)
i=1

where v = iw.
Solving Egs (9) and (10) using the coefficients of the method in Table 1 for
as31, 32, Cq, C3, by, b, and b3, we obtain the solution as given in Eqs (11) and (12):

_6cos(v) —6 —2v% + 3sin(v) v

21 = v2(4 + v?) 1
1 (6cos(v) v —2v —12sin(v) — v3)
92=73 4 +v3)v (12)

which lead to our new method TFRK3.
The corresponding Taylor series expansion of the solution is given in Eqgs (13) and

(14):

1 1, 1, 37 ., 1661 681
21 =5"16" Y 960" ~132440° ' 2419200° 39916800
1246879
29059430400 © T (13)
7 18269
g2 =1- 1%0”4 + 134340 ve - 6084380 v+ 5328226400 vl -
50893
mv + - (14)

TFMRK3 method will reduce to its original method that is RK3 method as
v — 0. The results of different parameter were compared and analyzed to identify
which problem that has contributed the smallest error.

Stability analysis
According to the stability and periodicity theory proposed by Lambert and Watson
(see [13]), the stability of the new method can be analysed by the test equation:

y' =iwy (15)
and produced

Yn+1 = Yo + hBY (16)

Y =,G + hAY (17)

where Y = [V,,Y,, .., Y], G =1[91, 92 -+, 9sl, B = [by, by, ...,bs]" and h = hw
From (17), we have:

Y = (I —hA) 3,6 (18)
Substituting Equation (18) into Equation (16), we obtained:
Yn+1 = R(E)yn
where R (ﬁ) represents the stability function of this new method such that:
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R(R) =1+ hB(1—h4) G (19)

Using this new method, stability polynomial was obtained by three different stages of
solution. Firstly, the value of a,; and g, were taken up to h® of their series solution

U ST BV A B3 . B
21 =57 767 T 960 13440~ @ 92 160° " 13440°
2 M. /1 7 N\ s 1 Ny /IN.y /13\ .4
R =3+ (3) 3~ (38) %~ (za50) ¥+ () ¥+ (5) 7~ (ag) *

37 \3 48 2880 1120 6 480

+( 227 )ff ( 37 )EB 20
40320 40320 (20)
Secondly, the value of a,; and g, were taken up to h® from their series solution.
11, 1, 37 1661
%21 =576 Y 960" " 13220" T 24192007
B3 e, B 8
927 27 760" T13440° " 60480 "

The stability polynomial of the new method is given as follow:
~ 2 (I\. 1\ .3 7 \ 5 1 N\ .7 79 ~9 (1\ .2
R(h)==+|=)h—(—= — = ——|h — -
(h) 3 * (3) (48) h (2880) hot (1120) (345600) ot (6) h

13\ .4 [ 227 499 \ g
~(a3) "+ (z0520)* - (550"
480 40320 362880

+ ( 1661 )i‘z“’ 21
7257600 (21)
Lastly, the value of a,, and g, were taken up to h'® of their series solution.
1 1 11 37 1661 6851
— a2 4 6 8__ _ — = .10
%21 =576 Y960Y " 13240" T 2419200" 39916800
3 73 83 18269
=1- 4 6 _ 8 10
92 160" t13220” “60480° T 532224007

The stability polynomial of the new method is given as follow:

-3 ()5- )5 - e ) - ()
K 3 48 2880 1120 345600
27403 ~11 1\ 2 13 ,\4 227
(i) (5 - ()5 ()
479001600 6 480 40320
499 \ g 54811 ~10
() )
362880 159667200

( 6851 ) 12 99
119750400 (22)
Stability region of the new method obtained by using the formula of Euler to equate

the above three stability polynomials and solving h using the maple package.

R(R) = €' = cos(8) + isin(6)
The stability interval of the new method is approximately (—2.429,0) while the re-
gion can be seen in Figure 1.
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Figure 1. The stability region of TFMRK3 using various orders.

Numerical experiments

In order to study the efficiency of the developed method, we present some numerical
experiments for the following three problems. The criterion used in the numerical
comparisons is the decimal logarithm of the maximum global error versus the com-
putational effort measured by the number of function evaluations required by each
method and the methods used in the comparison are denoted by:

e TFMRK3: The three-stage third-order trigonometrically-fitted modified RK

method derived in this paper.

e RK3: The three-stage third-order RK method given in [7].

o RK4(7): The seven-stage fourth-order RK method given in [9].

e RKS5(6): The seven-stage fourth-order RK method given in [13].

The accuracy strategy used is finding log,, of the maximum Global error :

The Maximum Global Error = log;, max||y(x,) — ynll
where x, = xo + nh,n =1,2,3, RO
Problem 1. (Harmonic Oscillator 1)
Y1 =Yz y1(0) =1
Y2 = =64y, y2(0) = =2
with exact solution

y1(x) = —%sin(Bx) + cos(8x),
y,(x) = —2 cos(8x) — 8sin(8x)

Problem 2. (Inhomogeneous problem 121')
Yi=Y2 y1(0) =1
y; = =100y, + 99sin(x) y,(0) =11
with exact solution
v, (x) = cos(10x) + sin(10x) + sin(x),
¥2(x) = =10 ssin(x) + 10cos(10x) + cos(x)
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Problem 3. (An almost Periodic Orbit problem °l")

Y1 =Yz y1(0) =1

y3 = —y; + 0.001 cos(x), ¥2(0) =1

Y3 = Ya, y3(0) =0

ys = —y; + 0.001 sin(x), y4(0) = 0.995

with exact solution

v, (x) = cos(x) + 0.0005x sin(x)
vy, (x) = —sin(x) + 0.0005x cos(x) + 0.0005 sin(x)
y3(x) = sin(x) — 0.0005x cos(x)
Va(x) = cos(x) + 0.0005x sin(x) — 0.0005 cos(x)
The efficiency of the method developed to presented in Figures 2-4 by plotting the
graph of the decimal logarithm of the maximum global error against the logarithms
number of function evaluations.
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Figure 2. Efficiency curves for all methods using problem 1 with h = 0.00625, 0.0125, 0.025
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Figure 3. Efficiency curves for all methods using problem 1 with h =0.00625, 0.0125, 0.025

and 0.05 for b =10000.
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Figure 4. Efficiency curves for all methods using problem 1 with h =0.00625, 0.0125, 0.025
and 0.05 for b= 10000.

CONCLUSION
This study has presented a newly developed trigonometrically-fitted modified Runge-
Kutta method (TFMRK) in solving first-order ordinary differential equations with
periodic solutions. We also analysed the linear stability of the new method. The nu-
merical results obtained show clearly that the global error of the new method is
smaller than that of the other existing methods. The proposed method is much more
efficient than the other existing methods.
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